Numerical Simulation of Orbiting Black Holes
نویسندگان
چکیده
منابع مشابه
Numerical simulation of orbiting black holes.
We present numerical simulations of binary black hole systems which for the first time last for about one orbital period for close but still separate black holes as indicated by the absence of a common apparent horizon. An important part of the method is the construction of comoving coordinates, in which both the angular and the radial motion are minimized through a dynamically adjusted shift c...
متن کاملAccurate evolution of orbiting binary black holes.
We present a detailed analysis of binary black hole evolutions in the last orbit and demonstrate consistent and convergent results for the trajectories of the individual bodies. The gauge choice can significantly affect the overall accuracy of the evolution. It is possible to reconcile certain gauge-dependent discrepancies by examining the convergence limit. We illustrate these results using an...
متن کاملTidal disruption of small satellites orbiting black holes
Low Mass X-ray Binaries (LMXBs) with either a black hole or a neutron star show power spectra characterised by Quasi Periodic Oscillations (QPOs). Twin peak high frequency QPOs are characterised by frequencies that are typical for matter orbiting within 10 rg from the compact object. We consider clumps of material orbiting a Schwarzschild black hole, that are deformed by tidal interaction. We p...
متن کاملApproximate black holes for numerical relativity.
Spherically symmetric solutions in Brans-Dicke theory of relativity with zero coupling constant, ! = 0, are derived in the Schwarzschild line-element. The solutions are obtained from a cubic transition equation with one small parameter. The exterior space-time of one family of solutions is arbitrarily close to the exterior Schwarzschild space-time. These nontopological solitons have some simila...
متن کاملNumerical black holes: A moving grid approach.
Spherically symmetric (1D) black-hole spacetimes are considered as a test for numerical relativity. A finite difference code, based in the hyperbolic structure of Einstein’s equations with the harmonic slicing condition is presented. Significant errors in the mass function are shown to arise from the steep gradient zone behind the black hole horizon, which challenge the Computational Fluid Dyna...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2004
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.92.211101